

Abstracts

Behavioral Modeling of Narrowband Microwave Power Amplifiers with Applications in Simulating Spectral Regrowth

A. Leke and J.S. Kenney. "Behavioral Modeling of Narrowband Microwave Power Amplifiers with Applications in Simulating Spectral Regrowth." 1996 MTT-S International Microwave Symposium Digest 96.3 (1996 Vol. III [MWSYM]): 1385-1388.

A new behavioral model for narrowband microwave power amplifiers is proposed. Analytic expressions for the gain compression (AM-AM) and amplitude dependent phase distortion (AM-PM) of a nonlinear amplifier are derived from a third-order Volterra series model. The cases of a single-tone and of a two-tone signal are explored. We show that the gain compression characteristics of nonlinear amplifiers depend on the amplitude modulation characteristics of the signal. Further more, we show that the time-averaged phase deviation is independent of the modulation envelope. This justifies the new model proposed for obtaining the envelope transfer characteristics by applying the Bessel-Fourier technique only to the AM-AM characteristic. This model is verified by comparing spectral regrowth simulations of digitally modulated signals to those measured in a 1.9 GHz GaAsFET power amplifier.

[Return to main document.](#)